The Monadic Second-Order Logic of Graphs XI: Hierarchical Decompositions of Connected Graphs

نویسنده

  • Bruno Courcelle
چکیده

We prove that the unique decomposition of connected graphs defined by Tutte is definable by formulas of Monadic Second-Order Logic. This decomposition has two levels: every connected graph is a tree of "2-connected components" called blocks ; every 2-connected graph is a tree of so-called 3-blocks. Our proof uses 2dags which are certain acyclic orientations of the considered graphs. We obtain also a unique decomposition theorem for 2-dags and a definability of this decomposition in Monadic Second-Order Logic.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph equivalences and decompositions definable in Monadic Second-Order Logic. The case of Circle Graphs

Many graph properties and graph transformations can be formalized inMonadic Second-Order logic. This language is the extension of First-Order logic allowing variables denoting sets of elements. In the case of graphs, these elements can be vertices, and in some cases edges. Monadic second-order graph properties can be checked in linear time on the class of graphs of tree-width at most k for any ...

متن کامل

The monadic second-order logic of graphs XVI : Canonical graph decompositions

This article establishes that the split decomposition of graphs introduced by Cunnigham, is definable in Monadic Second-Order Logic.This result is actually an instance of a more general result covering canonical graph decompositions like the modular decomposition and the Tutte decomposition of 2-connected graphs into 3-connected components. As an application, we prove that the set of graphs hav...

متن کامل

A Hierarchical Approach to Graph Automata and Monadic Second-Order Logic over Graphs

A hierarchical approach to the decomposition of graphs is introduced which is related to the notion of tree decomposition. On this basis a hierarchical automaton model for graphs is deened. We show that this automaton model is (relative to an appropriate class of graphs) equivalent to monadic second-order logic in expressive power, properly strengthening previous results on monadic second-order...

متن کامل

A Hierarchical Approach to Monadic Second-Order Logic over Graphs

The expressiveness of existential monadic second-order logic is investigated over several classes of nite graphs among them the graphs of bounded tree-width. A hierarchical approach to the decomposition of graphs is introduced which is related to the notion of tree decomposition. Among other results we show that existential monadic second-order logic on graphs of bounded tree-width is not close...

متن کامل

The monadic second-order logic of graphs XII: planar graphs and planar maps

We prove that we can specify by formulas of monadic second-order logic the unique planar embedding of a 3-connected planar graph. If the planar graph is not 3-connected but given with a linear order of its set of edges, we can also define a planar embedding by monadic second-order formulas. We cannot do so in general without the ordering, even for 2-connected planar graphs. The planar embedding...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 224  شماره 

صفحات  -

تاریخ انتشار 1999